Mathematics

Mark scheme for Test 2
 Tiers 3-5, 4-6, 5-7 and 6-8

Introduction

The test papers will be marked by external markers. The markers will follow the mark scheme in this booklet, which is provided here to inform teachers.

This booklet contains the mark scheme for paper 2 at all tiers. The paper 1 mark scheme is printed in a separate booklet. Questions have been given names so that each one has a unique identifier irrespective of tier.

The structure of the mark schemes

The marking information for questions is set out in the form of tables, which start on page 12 of this booklet. The columns on the left-hand side of each table provide a quick reference to the tier, question number, question part, and the total number of marks available for that question part.

The Correct response column usually includes two types of information:

- a statement of the requirements for the award of each mark,
with an indication of whether credit can be given for correct working, and whether the marks are independent or cumulative
- examples of some different types of correct response, including the most common.

The Additional guidance column indicates alternative acceptable responses, and provides details of specific types of response that are unacceptable. Other guidance, such as when 'follow through' is allowed, is provided as necessary.

Questions with a Using and applying mathematics element are identified in the mark scheme by an encircled U with a number that indicates the significance of using and applying mathematics in answering the question. The U number can be any whole number from 1 to the number of marks in the question.

For graphical and diagrammatic responses, including those in which judgements on accuracy are required, marking overlays have been provided as the centre pages of this booklet.

General guidance

Using the mark schemes

Answers that are numerically equivalent or algebraically equivalent are acceptable unless the mark scheme states otherwise.

In order to ensure consistency of marking, the most frequent procedural queries are listed on the following two pages with the prescribed correct action. This is followed by further guidance relating to marking of questions that involve money, negative numbers, algebra, time, coordinates or probability. Unless otherwise specified in the mark scheme, markers should apply the following guidelines in all cases.

What if ...

The pupil's response does not match closely any of the examples given.	Markers should use their judgement in deciding whether the response corresponds with the statement of requirements given in the Correct response column. Refer also to the Additional guidance.
The pupil has responded in a non-standard way.	Calculations, formulae and written responses do not have to be set out in any particular format. Pupils may provide evidence in any form as long as its meaning can be understood. Diagrams, symbols or words are acceptable for explanations or for indicating a response. Any correct method of setting out working, however idiosyncratic, is acceptable. Provided there is no ambiguity, condone the continental practice of using a comma for a decimal point.
The pupil has made a conceptual error.	In some questions, a method mark is available provided the pupil has made a computational, rather than conceptual, error. A computational error is a slip such as writing $4 \mathbf{t} 6$ e 18 in an otherwise correct long multiplication. A conceptual error is a more serious misunderstanding of the relevant mathematics; when such an error is seen no method marks may be awarded. Examples of conceptual errors are: misunderstanding of place value, such as multiplying by 2 rather than 20 when calculating $35 \mathbf{t} 27$; subtracting the smaller value from the larger in calculations such as $45-26$ to give the answer 21 ; incorrect signs when working with negative numbers.
The pupil's accuracy is marginal according to the overlay provided.	Overlays can never be 100% accurate. However, provided the answer is within, or touches, the boundaries given, the mark(s) should be awarded.
The pupil's answer correctly follows through from earlier incorrect work.	Follow through marks may be awarded only when specifically stated in the mark scheme, but should not be allowed if the difficulty level of the question has been lowered. Either the correct response or an acceptable follow through response should be marked as correct.
There appears to be a misreading affecting the working.	This is when the pupil misreads the information given in the question and uses different information. If the original intention or difficulty level of the question is not reduced, deduct one mark only. If the original intention or difficulty level is reduced, do not award any marks for the question part.
The correct answer is in the wrong place.	Where a pupil has shown understanding of the question, the mark(s) should be given. In particular, where a word or number response is expected, a pupil may meet the requirement by annotating a graph or labelling a diagram elsewhere in the question.

What if ...

The final answer is wrong but the correct answer is shown in the working.	Where appropriate, detailed guidance will be given in the mark scheme and must be adhered to. If no guidance is given, markers will need to examine each case to decide whether: the incorrect answer is due to a transcription error;	If so, award the mark.
	in questions not testing accuracy, the correct answer has been given but then rounded or truncated;	If so, award the mark.
	the pupil has continued to give redundant extra working which does not contradict work already done;	If so, award the mark.
	the pupil has continued, in the same part of the question, to give redundant extra working which does contradict work already done.	If so, do not award the mark. Where a question part carries more than one mark, only the final mark should be withheld.
The pupil's answer is correct but the wrong working is seen.	A correct response should always be marked as correct unless the mark scheme states otherwise.	
The correct response has been crossed or rubbed out and not replaced.	Mark, according to the mark scheme, any legible crossed or rubbed out work that has not been replaced.	
More than one answer is given.	If all answers given are correct or a range of answers is given, all of which are correct, the mark should be awarded unless prohibited by the mark scheme. If both correct and incorrect responses are given, no mark should be awarded.	
The answer is correct but, in a later part of the question, the pupil has contradicted this response.	A mark given for one part should not be disallowed for working or answers given in a different part, unless the mark scheme specifically states otherwise.	

Marking specific types of question

Responses involving money
For example: £3.20 £7

Accept $\sqrt{ }$	Do not accept x
\checkmark Any unambiguous indication of the correct amount eg $£ 3.20$ (p), £3 20, £3,20, 3 pounds 20, £3-20, £3 20 pence, £3:20, £7.00	x Incorrect or ambiguous indication of the amount eg $£ 320, £ 320$ p or $£ 700$ p
\checkmark The unit, £ or p, is usually printed in the answer space. Where the pupil writes an answer outside the answer space with no units, accept responses that are unambiguous when considered alongside the given units eg with $£$ given in the answer space, accept 3.20 $7 \text { or } 7.00$ \checkmark Given units amended eg with $£$ crossed out in the answer space, accept 320p 700p	x Ambiguous use of units outside the answer space eg with $£$ given in the answer space, do not accept 3.20p outside the answer space x Incorrect placement of decimal points, spaces, etc or incorrect use or omission of 0 eg £3.2, £3 200, £32 0, £3-2-0 $£ 7.0$

Responses involving negative numbers
For example: -2

Accept \checkmark	Do not accept \times
To avoid penalising the error below more than once within each question, do not award the mark for the first occurrence of the error within each question. Where a question part carries more than one mark, only the final mark should be withheld. \times Incorrect notation eg 2-	

Responses involving the use of algebra For example: $2 \mathrm{p} n \quad n \mathrm{p} 2 \quad 2 n \quad \frac{n}{2} \quad n^{2}$	
Accept $\sqrt{ }$	Take care ! Do not accept x
```\checkmark Unambiguous use of a different case or variable eg }N\mathrm{ used for } x used for n```	! Unconventional notation   eg $n \mathbf{t} 2$ or $2 \mathbf{t} n$ or $n 2$   or $n \mathrm{p} n$ for $2 n$   $n \mathbf{t} n$ for $n^{2}$   $n$ d 2 for $\frac{n}{2}$ or $\frac{1}{2} n$   $2 \mathrm{p} 1 n$ for $2 \mathrm{p} n$   2 p 0 n for 2   Within a question that demands simplification, do not accept as part of a final answer involving algebra. Accept within a method when awarding partial credit, or within an explanation or general working.   $x$ Embedded values given when solving equations   eg in solving $3 x \mathrm{p} 2=32$, $3 \text { t } 10 \mathrm{p} 2=32 \text { for } x=10$   To avoid penalising the two types of error below more than once within each question, do not award the mark for the first occurrence of each type within each question. Where a question part carries more than one mark, only the final mark should be withheld.
$\checkmark$ Words used to precede or follow equations or expressions   eg $t$ enp2 tiles or tiles etenp2 for $t$ enp 2	! Words or units used within equations or expressions   eg $n$ tiles p 2   $n \mathrm{~cm} \mathrm{p} 2$   Do not accept on their own. Ignore if accompanying an acceptable response.
$\checkmark$ Unambiguous letters used to indicate expressions eg $\quad t \mathrm{e} n \mathrm{p} 2$ for $n \mathrm{p} 2$	$x$ Ambiguous letters used to indicate expressions eg $n e n p 2$ for $n \mathrm{p} 2$

## Responses involving time

A time interval For example: 2 hours 30 minutes

Accept $\sqrt{ }$	Take care ! Do not accept $\times$
$\checkmark$ Any unambiguous indication eg 2.5 (hours), 2 h 30   $\checkmark$ Digital electronic time ie 2:30	$x$ Incorrect or ambiguous time interval eg 2.3(h), 2.30, 2-30, 2h 3, 2.30min   ! The unit, hours and/or minutes, is usually printed in the answer space. Where the pupil writes an answer outside the answer space, or crosses out the given unit, accept answers with correct units, unless the question has specifically asked for other units to be used.
A specific time For example: 8:40am	7:20
Accept	Do not accept x
$\checkmark$ Any unambiguous, correct indication   eg $08.40,8.40,8: 40,0840,840$, $8-40$, twenty to nine, 8,40   $\checkmark$ Unambiguous change to 12 or 24 hour clock eg 17:20 as 5:20pm, 17:20pm	x Incorrect time   eg $8.4 \mathrm{am}, 8.40 \mathrm{pm}$   x Incorrect placement of separators, spaces, etc or incorrect use or omission of 0 eg 840, 8:4:0, 084, 84

Responses involving coordinates
For example: $(5,7)$

Accept $\sqrt{ }$	Do not accept x
$\checkmark$ Unconventional notation   eg ( 05,07 )   (five, seven)   $\left(\begin{array}{l}x, \\ (5,7) \\ 7\end{array}\right.$   ( $x$ e $5, y$ e 7 )	x Incorrect or ambiguous notation   eg $(7,5)$   $\left(\begin{array}{ll}y \\ 7 & , x \\ 5\end{array}\right)$   ( $5 x, 7 y$ )   ( $5^{x}, 7^{y}$ )   ( $x \mathrm{~m} 5, y \mathrm{~m} 7$ )

## Responses involving probability

A numerical probability should be expressed as a decimal, fraction or percentage only
For example: $0.7 \quad \frac{7}{10} \quad 70 \%$

Accept $\sqrt{ }$	Take care ! Do not accept x
$\checkmark$ Equivalent decimals, fractions and percentages $\text { eg } \quad 0.700, \frac{70}{100}, \frac{35}{50}, 70.0 \%$	The first four categories of error below should be ignored if accompanied by an acceptable response, but should not be accepted on their own. However, to avoid penalising the first three types of error below more than once within each question, do not award the mark for the first occurrence of each type of error unaccompanied by an acceptable response. Where a question part carries more than one mark, only the final mark should be withheld.
$\checkmark$ A probability correctly expressed in one acceptable form which is then incorrectly converted, but is still less than 1 and greater than 0 $\text { eg } \quad \begin{aligned} & 70 \\ & 100 \end{aligned} \text { e } \begin{aligned} & 18 \\ & 25 \end{aligned}$	! A probability that is incorrectly expressed   eg 7 in 10   7 over 10   7 out of 10   7 from 10
	! A probability expressed as a percentage without a percentage sign.   ! A fraction with other than integers in the numerator and/or denominator.   ! A probability expressed as a ratio eg 7:10, $7: 3,7$ to 10   $x$ A probability greater than 1 or less than 0

## Recording marks awarded on the test paper

All questions, even those not attempted by the pupil, will be marked, with a 1 or a 0 entered in each marking space. Where 2 m can be split into 1 m gained and 1 m lost, with no explicit order, then this will be recorded by the marker as 1

The total marks awarded for a double page will be written in the box at the bottom of the right-hand page, and the total number of marks obtained on the paper will be recorded on the front of the test paper.

A total of 120 marks is available in each of tiers $3-5,4-6$ and $6-8$.
A total of 121 marks is available in tier 5-7.

## Awarding levels

The sum of the marks gained on paper 1, paper 2 and the mental mathematics paper determines the level awarded.

BLANK PAGE



Tier \& Question					Thinking angles
3-5	6 5-7	6-8			
3				Correct response	Additional guidance
a			1m	Indicates Angle $d$, ie	
b			1m	Gives a correct explanation eg   - It's a right angle   - It must be $90^{\circ}$	$\checkmark$ Minimally acceptable explanation eg   - Right   - Quarter turn   ! Units incorrect or omitted   eg   - $90^{\circ} \mathrm{C}$   - $90 \%$   - 90   Condone   X Incomplete explanation   eg   - It's a square angle   - It's a corner


Tier \& Question					Moving on a grid
3-5	4-6 5	5-7 6-8			
4				Correct response	Additional guidance
a			1m	Gives the correct direction eg   - South 1   - 1 S	! Correct compass point(s) indicated, but indication of the number of squares to move incorrect or omitted   Penalise only the first occurrence eg, for parts (a) and (b)   - South 2 [for part (a)] then   North 1   East 2   South 3 [for part (b)]   Mark as 0,1
b			1m	Gives all three correct directions in a correct order to form a square eg   - North 1   East 1   South 1   - 1 S   1 E   1 N	! For part (b), response uses additional directions but a square is still formed eg   - West 1 [repeated]   South 2   East 2   North 2   Condone


Tier \& Question				Cards
3-5 4-6	5-7 6-8			
5			Correct response	Additional guidance
a		1m	£ 2.60	! Final zero omitted Provided this is the only error, penalise only the first occurrence
b		1m	£ 6.10	! Value given in pence without the corresponding change in units Provided this is the only error, penalise only the first occurrence
c			Gives a correct pair of codes in either order, ie C and D   or   $B$ and $E$   Gives a correct pair of codes, other than any previously credited	$\checkmark$ Unambiguous indication eg, for C and D   - Digits 165 and 195   - C and 1.95   eg, for B and E   - Digits 125 and 235



Tier \& Question				Joining points
3-5 4-6	5-7 6-8			
7			Correct response	Additional guidance
a		1m	Joins only four points to make a square eg	! Lines not ruled or accurate   Accept provided the pupil's intention is clear   ! Points correctly indicated but line(s) incorrect or omitted Penalise only the first occurrence
b		1m	Joins only three points to make an equilateral triangle eg	
c		1m	Joins only three points to make an isosceles triangle eg   -	! Equilateral triangle made for part (c) Accept provided a set of three points other than one credited for part (b) is used


Tier \& Question			Mirror lines		
3-5 4-6		-7 6-8			
8	1			Correct response	Additional guidance
			2m $o r$ 1m	Reflects the triangle correctly in both mirror lines, completing the triangles in all three quadrants correctly, ie   Completes the triangles in any two of the three quadrants correctly   or   Makes an error in the position of one triangle, and follows through correctly if the incorrect image may have been used for further reflection eg   or   Makes an error in the position of one vertex, but still draws a right-angled triangle with the hypotenuse in the correct orientation, and follows through correctly if the incorrect image may have been used for further reflection eg	! Lines not ruled or accurate   Accept provided the pupil's intention is clear   X For 1m, error in the orientation of a reflected triangle






Tier \& Question						Pregnancy
3-5	4-6	5-7	6-8			
12	5				Correct response	Additional guidance
a	a			1m	Whale	$\checkmark$ Unambiguous indication   eg, for part (a)   - W   - 365
b	b			1m	Seal	
c	c			1m	Dolphin	


						Missing numbers
$$						
13	6				Correct response	Additional guidance
				1m	40	
				1m	100	
				1m	50	



Tier \& Question						Sponsored swim
15	8				Correct response	Additional guidance
a	a			1m	£ 400	! Zeros given after the decimal point   Condone two zeros eg, for part (a) accept   - £ 400.00
b	b			1 m	£ 430	Penalise only the first occurrence of one zero eg, for parts (a) and (b)   - £ 400.0   £ 430.0   Mark as 0,1




Tier \& Question			Wine gums (cont)		
3-5		5-7 6-8			
16	10	2		Correct response	Additional guidance
b	b	b	1m	Explains that Tina used the largest sample size eg   - The more tests you do, the more reliable the results   - Tina asked more people than the others   - 200 is bigger than 100 or 50	$\checkmark$ Minimally acceptable explanation   eg   - More tests   - More people   - More wine gums   - 200 is bigger   - She asked 200 and the others asked 100 or 50 [comparison implicit]   - She asked twice as many people as Sita [comparison with Ravi implicit]   ! Irrelevant information or claim   eg   - It was 50/50   - Hers were more evenly split   - She asked a wider range of people Ignore if accompanying a correct response   X Incomplete or incorrect explanation eg   - More   - She asked 200 people [no comparison]   - Her results are more reliable as it was half and half



		Thinking triangularly		
1912	4		Correct response	Additional guidance
		or 1m	Gives all four correct responses, including examples for the two true statements eg   Gives any three correct responses, including a correct example for any true statement   or   Gives correct responses for the two true statements, including correct examples, but leaves the spaces for the false statements blank   Gives a correct response for one of the true statements, including a correct example   or   Correctly labels all four statements 'true' or 'false' but examples for the true statements are incorrect or omitted	$\checkmark$ Unambiguous indication of 'true' and 'false' eg   - $V$ for true, $X$ for false   ! 'True’example(s) drawn correctly but indication of 'true' omitted Condone, provided the examples show unambiguously that the statement is true   ! Angles in the triangles not marked or marked incorrectly Ignore   ! Triangles not drawn accurately Accept provided the pupil's intention is clear eg, for the first 'true' example accept   ! Acute or obtuse angles look like right angles Do not accept if the angles are $90^{\circ} \pm 1^{\circ}$ Otherwise, condone   ! Example(s) given alongside 'false'   As these may be trials, ignore


Tier \& Question	
$3-54-65-76-8$	Toilet rolls

3m
Indicates the pack of 6 toilet rolls
and
gives a correct justification, based on a pair of comparable values
eg

- The 6 -pack costs $£ 1.25$ for 3 rolls, but the 9 -pack costs $£ 1.30$ for 3 rolls
- $3.9(0)$ d 9 e $0.43(\ldots)$
$2.5(0) \mathrm{d} 6$ e $0.41(\ldots)$
- For 9 rolls we have 3.90 and 2.50 d 2 t 3 e 3.75
- 6 rolls: 390 d 3 t 2 e 260, ie 10p more
- The 3 extra toilet rolls in the 9 -pack cost $£ 1.40$, but in the 6 -pack 3 rolls cost $£ 1.25$
- If the 9 -pack were decreased by 3 rolls its price should go down by $£ 1.30$, but the difference is $£ 1.40$ so it's a better reduction
- 3 extra rolls cost $£ 1.40$ so 12 rolls using the large pack is 3.90 p 1.40 e 5.30 , whereas 2.50 p 2.50 for the small pack is only 5.00

Shows a correct pair of comparable values but makes either an incorrect or no decision
or
Attempts to find a pair of comparable values, making not more than one computational or rounding error, then follows through to make their correct decision eg

- The 6 -pack is $£ 1.30$ (error) for 3 rolls and so is the 9 -pack, so they are the same
- The 9 -pack is $£ 3.90$ but should be 2.50 d $6 \mathbf{t} 9$ e 0.41 (rounding error) $\mathbf{t} 9$ e 3.69 so 6-pack is cheaper

Shows, or implies by a correct value, a correct method to calculate at least one value for comparison, even if there are computational or rounding errors
or
Shows the difference in price for $3,6,9$ or 18 rolls, even if the comparable values or the methods to calculate them are not shown eg

- The 6 -pack is 5 p cheaper
- The big pack is 10 p more
- 15p difference
- 30p less


## $\times$ For 3m, no decision

$\checkmark$ For 3m, correct decision and any pair of comparable values shown
Note that common pairs (in pounds) are:
1.3 and 1.25 (per 3 rolls)
$0.43(\ldots)$ and $0.41(\ldots)$ or 0.42 (per 1 roll)
(3.9 and) 3.75
2.6 (and 2.5)
(per 9 rolls)
(per 6 rolls)
7.8 and 7.5
(per 18 rolls)
15.6 and 15
(per 36 rolls)
23.4 and 22.5
1.4 and 1.25 [or 1.3]
2.3(...) and 2.4
(per 54 rolls)
(3 extra rolls)
(rolls per pound)
! Comparison is per 9 rolls or per 6 rolls but the given price is not restated

## Condone

eg, for 3 m accept

- The 6-pack, because 9 rolls should be $£ 3.75$
! Units omitted, incorrect or inconsistent
Condone provided the pupil's intention is clear
eg, for 3 m accept
- The 6 -pack, because $3.9(0)$ d 9 e 43
$2.5(0) \mathrm{d} 6$ e 42


## ! Additional incorrect working Ignore

Note that common calculations are:

3.9 d 3 or 2.5 d 2	(per 3 rolls)
3.9 d 9 or 2.5 d 6	(per 1 roll)
$2.5 \mathrm{~d} 2 \mathbf{t} 3$	(per 9 rolls)
$3.9 \mathrm{~d} 3 \mathbf{t} 2$	(per 6 rolls)
$3.9 \mathbf{t} 2$ or $2.5 \mathbf{t ~} 3$	(per 18 rolls)
$3.9 \mathbf{t} 4$ or $2.5 \mathbf{t} 6$	(per 36 rolls)
$3.9 \mathbf{t} 6$ or $2.5 \mathbf{t ~} 9$	(per 54 rolls)
3.9 m 2.5 or 2.5 d 2 [or 3.9 d 3$]$	(3 extra rolls)
9 d 3.9 or 6 d 2.5	(rolls per pound)





					Balancing
$\begin{array}{\|l\|l\|} \hline \text { Tier \& Question } \\ \hline 3-5 & 4-6 \\ \hline-7 & 6-8 \\ \hline \end{array}$					
17	9	2		Correct response	Additional guidance
a	a	a	1m	5	
b	b	b	1m	35	! Answers to parts (a) and (b) transposed but otherwise correct   Mark as 0,1



Tier \& Question					$n$th term
3-5 4-6	5-7	6-8			
19	11	4		Correct response	Additional guidance
a	a	a	1m	Gives a correct expression eg   - $4 n \mathrm{p} 2$   - 4n p 1 p 1	! Unsimplified expression or unconventional notation   eg, for part (a)   - $4 \mathbf{t} n \mathrm{p} 2$   - $n 4$ p 2   Condone
b	b	b	1m	Gives a correct expression eg   - $3 n \mathrm{p} 3$   - 3(n p 1)   - $\frac{1}{2}$ ( $6 n \mathrm{p} 6$ )   - $(6 n$ p 6) d 2   - $\frac{6 n}{2} p \frac{6}{2}$	X Necessary brackets omitted   eg, for part (b)   - $6 n$ p 6 d 2   eg, for part (c)   - 2 t $5 n \mathrm{~m} 3$
c	c	c	1m	Gives a correct expression eg   - 10 n m 6   - 2(5n m 3)   - $(5 n \mathrm{~m} 3) \mathrm{t} 2$	


Tier \& Question				Enlargement
3-5 4-6	5-7 6-8			
20	125		Correct response	Additional guidance
		1m   1m	Indicates the correct centre of enlargement for the first diagram, ie   Indicates the correct centre of enlargement for the second diagram, ie	! Centre of enlargement indicated only by intersection of construction lines Accept provided there is no ambiguity   ! Inaccurate indication   Accept provided their indication is within 2 mm of the correct position   ! Incorrect construction lines shown Ignore


Tier \& Question					Error
3-5 4-6	5-7				
21	14	6		Correct response	Additional guidance
	a	a	$1 \mathrm{~m}$ $1 \mathrm{~m}$	120   84	! Incorrect use of \% sign Ignore
	b	b	2m   or   1m	Gives two correct percentages that sum to 100 eg   - 39   61   - 38.8   61.2   - 38.83   61.17   Gives one correct percentage even if truncated, ie 38 or better, or 61 or better   or   Shows or implies a correct method for both percentages   eg   - 80 d 206   126 d 206   - Digits 38(...) (or 39) and 61(...)	! Values rounded   For 2 m , accept percentages correctly rounded to two or more significant figures, provided they sum to 100   Note to markers:   $\begin{array}{ll}\text { Correct percentages are } \quad & 38.834951456 \ldots \\ & 61.165048543 \ldots\end{array}$


Tier \& Question			Tomatoes		
3-5 4-6	5-7 6				
22	15	7		Correct response	Additional guidance
a	a	a	1m	Gives a value between 7.2 and 7.5 inclusive, or equivalent	
b	b	b	1m	Indicates A and gives a correct explanation   The most common correct explanations:   Use the trend line for type A eg   - It is closest to the line for type A   - $(3.2,5.8)$ is close to $(3,6)$ which is on line A   - Type A have smaller diameters with bigger heights than the other types   - For A, the height is about double the diameter, and that's roughly true for this one   Refer to the diameters of type B being consistently larger than 3.2 cm , or to the heights of type A differing from their diameters eg   - It's between the lines for A and B , but all the type Bs have diameters between 6 and 7   - It's too far from the type C line so it's A or B, and the A ones don't have similar diameters and heights	$\checkmark$ Minimally acceptable explanation   eg   - It's closest to that line   - The line goes through $(3,6)$ which is very close   - It is closest to type A [with point correctly plotted on graph]   - Type A have small diameters with big heights   - For A, height is bigger than diameter   - A tomatoes are thin but tall   X Incomplete or incorrect explanation   eg   - It is closest to type A   - It's in the A section   - For A, the height is double the diameter   - The graph shows it   - It is on A's line   - Type A tomatoes have small diameters   $\checkmark$ Minimally acceptable explanation   eg   - B tomatoes have bigger diameters   - A tomatoes have diameters that are not roughly equal to their heights   X Incomplete explanation   eg   - It could be A or B but it's more like A


Tier \& Question		Tomatoes (cont)		
3-5 4-6	5-7 6-8			
22	157		Correct response	Additional guidance
c	c c	$1 \mathrm{~m}$	Indicates B and gives a correct explanation   The most common correct explanations:   Refer to the position of its line on the graph   - B's graph is closest to $y \mathrm{e} x$ (or $h \mathrm{e} d$ )   - The line for $B$ is closest to the line drawn [line $h$ e $d$ correctly indicated on graph]   Refer to the dimensions of the tomatoes eg   - The height and the diameter of a sphere are equal and that's also roughly true for B   - The height and diameter of B are both around 6   - A tomatoes are too tall for their diameter, but C tomatoes are too fat for their height	$\checkmark$ Minimally acceptable explanation   eg   - B's line is about $45^{\circ}$ through the middle   - It goes through $(0,0)$ then when $d$ goes up by 1 , so does $h$   - The $x$ and $y$ (or $h$ and $d$ ) coordinates are nearly equal   $X$ Incomplete or incorrect explanation   eg   - B's line is at about $45^{\circ}$   - B's line is a diagonal through the middle   - The graph shows it   - B has $h$ e 2 and $d$ e 2   $\checkmark$ Minimally acceptable explanation eg   - Same height and diameter   - $h$ and $d$ are closest   - The two values are nearly equal   - The others are either too tall and thin or too short and wide
	d d	2m   or   1m	Gives the value $22.4(\ldots)$ or 22.5   Shows or implies a correct method with not more than one computational or rounding error   eg   - 3.14 t $3.5^{3}$ d 6   - $\frac{1}{6} \pi 3.5^{2}$ t 3.5   - $\pi \mathrm{d} 6 \mathrm{e} 0.52$ (premature rounding), 0.52 t 12.25 t 3.5 e 22.3   - Answer of 22 or 23 , with no correct method or more accurate value	! For 2m, answer of 22 or 23   Do not accept unless a correct method or a more accurate value is seen   $\times$ For 1m, no indication of multiplication eg $\begin{aligned} & \frac{1}{6} \pi 3.5^{2} 3.5 \\ & \cdot \frac{1}{6} \pi 12.253 .5 \end{aligned}$   X For 1m, conceptual error eg - $\frac{1}{6} \mathbf{t} \pi \mathbf{t} 7 \mathbf{t} 3.5$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Tier \& Question \\
3-5 4-6 5-7 6-8
\end{tabular}} \& \multicolumn{3}{|r|}{Expressions} \\
\hline 23 \& 13 \& 8 \& \& Correct response \& Additional guidance \\
\hline \& \&  \& \[
\begin{gathered}
2 \mathrm{~m} \\
\begin{array}{c}
o r \\
\mathbf{1 m}
\end{array}
\end{gathered}
\] \& \begin{tabular}{l}
Shows or implies the four correct terms resulting from multiplying out the brackets, even if there is incorrect further working eg \\
- \(5 x, 10,21,3 x\) \\
- \(5 x \mathrm{p} 10\) and \(21 \mathrm{p} 3 x\) \\
- \(5 x\) p 31 p \(3 x\) \\
- \(8 x\) p 10 p 21 \\
or \\
Multiplies out both sets of brackets with not more than one error, then follows through using their expansion to give a fully simplified expression \\
eg \\
- \(5 x\) p 10 p 27 (error) p \(3 x\) e \(8 x\) p 37
\end{tabular} \& X For 1m, incomplete processing in constant terms eg, for the first expression - \(5 x\) p 5 t 2 p \(3 t 7\) p \(3 x\) \\
\hline \& \& \& 2m

or

1 m \& | $x^{2} \mathrm{p} 7 x \text { p } 10$ |
| :--- |
| Shows or implies the four correct terms resulting from multiplying out the brackets, even if there is incorrect further working eg $\begin{aligned} & . x^{2}, 2 x, 5 x, 10 \\ & : x \mathbf{t} x \mathrm{p} 5 x \text { and } 2 \mathrm{t} x \mathrm{p} 10 \end{aligned}$ |
| or |
| The only error in an otherwise correct and simplified expression is to give an incorrect but non-zero constant term, or to leave incomplete processing in the correct constant term eg $\begin{aligned} & =x^{2} \mathrm{p} 2 x \mathrm{p} 5 x \mathrm{p} 7 \text { (error) }=x^{2} \mathrm{p} 7 x \mathrm{p} 7 \\ & =x^{2} \mathrm{p} 7 x \mathrm{p} 2 \mathrm{t} 5 \\ & =x \mathrm{t} x \mathrm{p} 7 \mathrm{t} x \mathrm{p} 2 \mathrm{t} 5 \end{aligned}$ | \& ! Expression equated to zero Condone <br>

\hline
\end{tabular}

Tier \& Question			Marking overlay available		Tracking elephants
3-5	6 5-7				
	16	9		Correct response	Additional guidance
			$2 \mathrm{~m}$   or $1 \mathrm{~m}$	Uses compasses to draw two arcs centred on A and B within the tolerances as shown on the overlay, and indicates the correct region   Draws two arcs centred on A and B within the tolerances as shown on the overlay, even if compasses are not used, and/or an incorrect or no region is indicated   or   Indicates the correct region for their arcs centred on A and B, even if they are outside the tolerance as shown on the overlay   or   The only error is that the two arcs are centred on the incorrect vertices of the square	! Arcs extended Ignore   ! Extra arcs drawn   Ignore provided there is no ambiguity   ! For 1m, follow through   Accept unambiguous indication of a correct region formed by an attempt at two symmetrical arcs or sets of lines 'centred' on $A$ and $B$, even if inaccurately drawn eg, accept   Do not accept follow through from only one arc or line, or from non-symmetrical arcs or lines



Tier \& Question				Four kites
3-5	5-7 6-8			
	1811		Correct response	Additional guidance
		$2 \mathrm{~m}$   or 1m	Shows the value 230 or 130   or   Shows the value 90 , provided there is no evidence that this value has been assigned to angle $k$   or   Shows or implies a complete correct method with not more than one computational error eg   - $\frac{1}{2}\left(320 \mathrm{~m} \frac{360}{4}\right)$   - 180 m 45 m 20   - $\frac{1080 \mathrm{~m} 4 \mathrm{t} 40}{8}$   or   Forms a correct equation involving $k$, even if the $90^{\circ}$ angle has not been found   eg   - $2 k$ e $360 \mathrm{~m} 40 \mathrm{~m} x$   - (ke) $160 \mathrm{~m} \frac{1}{2} x$	



Tier \& Question		Bias		
3-5	5-7 6-8			
	2013		Correct response	Additional guidance
		$2 \mathrm{~m}$ or 1m	Indicates the coin is not biased (eg 'Not biased' or ' No ')   and gives a correct justification eg   - Of the 200 trials, 110 are heads $\begin{aligned} & \frac{110}{200} \text { e } 0.55 \\ & 0.55<0.56 \\ & \cdot 0.56 \text { t } 200 \text { e } 112 \\ & 112>110 \end{aligned}$   - The mean number of heads is 11 $20 \mathbf{t} 0.56$ e 11.2, $11<11.2$   - 0 p 3 p1p1p2p2p1m1p0p1e10, 10 d 200 e $5 \%$, so it's $55 \%$ which is less than $56 \%$   Shows a correct estimate of probability based on all 200 results, even if it is written unconventionally, but makes an incorrect or no decision eg   - 0.55   - 55(\%)   - $\frac{110}{200}$   - $\frac{11}{20}$   - 110 out of 200   or   Shows the values 110 and 112 , or 11 and 11.2, but makes an incorrect or no decision   or   Shows or implies a correct method with not more than one computational error, then follows through to make their correct decision eg   - 5 p 6.5 p 5.5 p 5.5 p ... p 5.5 so not biased   - 10 p 13 p 11 p... p 11 e 114 (error), $\frac{114}{200}>0.56 \text { so biased }$	$\checkmark$ Minimally acceptable justification   eg   - 55\%   - $\frac{110}{200}$   - 110, 112   - 11, 11.2   ! Response assumes the pupil has already concluded the coin is biased Condone   eg, for 2 m accept   - $55 \%$, so her conclusion is wrong   ! Irrelevant information   eg   - 7 of the 10 sets of results were less than 11.2   Ignore if accompanying a correct response, otherwise do not accept   $\times$ For 2m, incomplete or incorrect justification eg   - They add up to 110   - The mean is 11   - 0.56 t 20 e 11.2   - Median e 11 and $11<11.2$



Tier \& Question					Field voles
3-5	5-7	6-8			
	22			Correct response	Additional guidance
		a	1m	Gives a value between 0.65 and 0.68 inclusive or equivalent probability eg   - $\frac{660}{1000}[0.66]$	
		b	1m	Gives a value between 0.5 and 0.61 inclusive or equivalent probability eg   - $\frac{160}{290}[0.5517 \ldots]$   - $\frac{150}{290}[0.5172 \ldots]$   - $\frac{160}{300}[0.5333 \ldots]$	



Tier \& Question		Equations of lines		
3-5 4-6	5-7 6-8			
	17		Correct response	Additional guidance
	a	1m	Gives the equation of a straight line, other than $y \mathrm{e} x \mathrm{p} 1$, that passes through $(0,1)$   eg   - $y$ e $2 x$ p 1   - ye mxp 1   - ypxel   - $3 y \mathrm{p} 3 x$ e 3   - ye 1   - $x$ e 0   Gives a correct equation, other than one previously credited	! Throughout the question, unsimplified equation or unconventional notation eg, for part (a)   - $y=2 \mathbf{t} x \mathrm{p} 1$   - $y=x \mathrm{p} \times \mathrm{p} 1$   Condone   X Same equation as the given line, but rearranged eg   - $y \mathrm{~m} x$ e 1   - $y$ exp 2 m 1   - $2 y=2 x$ p 2   $X$ Same equation as the given line or one previously credited, but rearranged
	b	1m	Gives the equation of a straight line that is parallel to $x \mathrm{p} y \mathrm{e} 5$ eg   - $x$ pye 3   - yemxp6	X Same equation as the given line, but rearranged eg   - $2 x$ p $2 y$ e 10   - $y$ e $5 \mathrm{~m} x$


Tier \& Question				Households
3-5 4-6	5-7 6-8			
	18		Correct response	Additional guidance
		$\begin{gathered} 3 \mathrm{~m} \\ \hline \begin{array}{c} o r \\ 2 \mathrm{~m} \end{array} \\ \hline \\ \\ \hline \end{gathered}$	Shows the value $98.4,98.3(\ldots)$ or 98   or   Shows or implies a correct method even if there are rounding or truncation errors   eg   - $100 \mathrm{~m}^{20.97} \frac{\mathbf{t} 2.34 \mathbf{t} 100}{49.87}$   - 20.97 t 2.34 e 49.07   49.87 m 49.07 e 0.8 $\frac{0.8}{49.87}$   - $\left(\frac{49.87}{20.97} \mathrm{~m} 2.34\right) \mathbf{t} \frac{20.97}{49.87} \mathbf{t} 100$   - $\frac{49.87}{2.34}$ e 21.(...), $\frac{21 .(\ldots)}{21 .(\ldots)}$   - Gives an answer that rounds or truncates to 1.6 , or is equivalent to 1.6   - Shows the digits $16(\ldots)$   Shows the number of people who did live in households   eg   . 49.0698 million   - 49.1 million   , 49.0(...) million   or   Shows the number of people who did not live in households   eg   - 0.8(...) million   - 800200   - 800000   or   Shows the number of households there would have been if every person had lived in one eg   - 21.3(...) million	X For 3m, equivalent fractions or decimals   $\checkmark$ For 1m, 'million' omitted   ! Value of 49 (million) given as the number of people who did live in households For 1 m , do not accept unless a correct method or a more accurate value is seen


Tier \& Question				Cuboid	
3-5 4-6	5-7 6-8				
	19		Correct response	Additional guidance	
			Gives both correct surface areas, ie 88 and 104   Gives one correct surface area   or   Shows the values 22 and 26   or   Shows a complete correct method with not more than one computational error eg   - 24 d 6 e 4 ,   $(4 \mathbf{t} 6 \mathrm{p} 2 \mathrm{t} 1) \mathrm{t} 4$ and   $(2 \mathbf{t} 6 \mathrm{p} 2 \mathrm{t} 3 \mathrm{p} 2 \mathrm{t} 2) \mathrm{t} 4$   - 24 t 6 e 144 ,   144 m 14 t 4 and   144 m 10 t 4   - 24 d 6 e 3 (error)   Answers: 66 and 78   - 24 t 6 e 124 (error)   124 m 14 t 4 e 68   124 m 10 t 4 e 84   or   The only error is to take 24 as the area of one face of each small cube, ie gives the answers 528 and 624	! For 1m, other working shown As these may be trials, ignore	




Tier \& Question				Population of Wales
3-5 4-6	5-7 6-8			
	22		Correct response	Additional guidance
		2m   or   1m	$2 \frac{2}{3}$ or equivalent   Shows or implies that 3 million represents $\frac{9}{8}$ eg   - 3 t 8 d 9   - 3000000 m 3000000 d 9   . 3 e $112.5 \%$   or   Shows the digits 27 or $266(\ldots)$, with no evidence of an incorrect method	! For 2m, value rounded or truncated Accept 2.7 or 2.66 or better, provided there is no evidence of an incorrect method Do not accept 2.6 unless a correct method or a more accurate value is seen   ! For $2 m$ or $1 m$, million repeated   eg, for 2 m accept   - 2666667   $X$ For $2 m$ or 1m, evidence of an incorrect method   eg   - $3 \mathrm{~d} 8 \mathbf{t} 7$ which is about 2.7   - 2.625 , so 2.7



BLANK PAGE

BLANK PAGE

Index to mark schemes

Tier				Question	Page
3-5	4-6	5-7	6-8		
1				Matching	12
2				Pupil list	13
3				Thinking angles	14
4				Moving on a grid	15
5				Cards	15
6				Tennis	16
7				Joining points	17
8	1			Mirror lines	18
9	2			Using rules	19
10	3			Cough mixture	20
11	4			Working with areas	22
12	5			Pregnancy	23
13	6			Missing numbers	23
14	7			Hexagons	24
15	8			Sponsored swim	24
18	9	1		Cat food	25
16	10	2		Wine gums	26
17	11	3		Values	27
19	12	4		Thinking triangularly	28
22	13	5		Toilet rolls	29
20	14	6		Woodpeckers	30
21	15	7		Changing 120	30
	16	8	1	Four angles	31
	17	9	2	Balancing	31
	18	10	3	Five cubes	32
	19	11	4	$n$th term	33
	20	12	5	Enlargement	34
	21	14	6	Error	35
	22	15	7	Tomatoes	36
	23	13	8	Expressions	38
		16	9	Tracking elephants	39
		17	10	Algebra grids	40
		18	11	Four kites	41
		19	12	Volume of 100	41
		20	13	Bias	42
		21	14	Area A	43
		22	15	Field voles	44
			16	Films	45
			17	Equations of lines	46
			18	Households	47
			19	Cuboid	48
			20	Five points	49
			21	Three dice	50
			22	Population of Wales	51
			23	Leaning tower of Pisa	52

## Tracking elephants

Tier 5-7 Paper 2 Question 16
Tier 6-8 Paper 2 Question 9


