Mathematics
Mark scheme
for Test 2
Tiers 3-5, 4-6, 5-7 and 6-8

Introduction

The markers will follow the mark scheme in this booklet, which is provided here to inform teachers.

This booklet contains the mark scheme for paper 2 at all tiers. The paper 1 mark scheme is printed in a separate booklet. Questions have been given names so that each one has a unique identifier irrespective of tier.

The structure of the mark schemes

The marking information for questions is set out in the form of tables, which start on page 11 of this booklet. The columns on the left-hand side of each table provide a quick reference to the tier, question number, question part and the total number of marks available for that question part.

The Correct response column usually includes two types of information:

- a statement of the requirements for the award of each mark, with an indication of whether credit can be given for correct working, and whether the marks are independent or cumulative

■ examples of some different types of correct response, including the most common.

The Additional guidance column indicates alternative acceptable responses, and provides details of specific types of response that are unacceptable. Other guidance, such as when 'follow-through' is allowed, is provided as necessary.

Questions with a $U A M$ element are identified in the mark scheme by an encircled U with a number that indicates the significance of using and applying mathematics in answering the question. The U number can be any whole number from 1 to the number of marks in the question.

For graphical and diagrammatic responses, including those in which judgements on accuracy are required, marking overlays have been provided as the centre pages of this booklet.

General guidance

Using the mark schemes

Answers that are numerically equivalent or algebraically equivalent are acceptable unless the mark scheme states otherwise.

In order to ensure consistency of marking, the most frequent procedural queries are listed on the following two pages with the prescribed correct action. This is followed by further guidance relating specifically to the marking of questions that involve money, negative numbers, algebra, time, coordinates or probability. Unless otherwise specified in the mark scheme, markers should apply the following guidelines in all cases.

What if ...
$\left.\begin{array}{|r|l|}\hline \begin{array}{r}\text { The pupil's response } \\ \text { does not match } \\ \text { closely any of the } \\ \text { examples given. }\end{array} & \begin{array}{l}\text { Markers should use their judgement in deciding whether the response } \\ \text { corresponds with the statement of requirements given in the Correct response } \\ \text { column. Refer also to the Additional guidance. }\end{array} \\ \hline \begin{array}{r}\text { The pupil has } \\ \text { responded in a } \\ \text { non-standard way. }\end{array} & \begin{array}{l}\text { Calculations, formulae and written responses do not have to be set out in } \\ \text { any particular format. Pupils may provide evidence in any form as long as its } \\ \text { meaning can be understood. Diagrams, symbols or words are acceptable for } \\ \text { explanations or for indicating a response. Any correct method of setting out } \\ \text { working, however idiosyncratic, is acceptable. Provided there is no ambiguity, } \\ \text { condone the continental practice of using a comma for a decimal point. }\end{array} \\ \hline \text { The pupil has made a } \\ \text { conceptual error. } & \begin{array}{l}\text { In some questions, a method mark is available provided the pupil has made } \\ \text { a computational, rather than conceptual, error. A computational error is } \\ \text { a 'slip' such as writing 4 } \times 6=18 \text { in an otherwise correct long multiplication. } \\ \text { A conceptual error is a more serious misunderstanding of the relevant } \\ \text { mathematics; when such an error is seen, no method marks may be awarded. } \\ \text { Examples of conceptual errors are: misunderstanding of place value, such as } \\ \text { multiplying by 2 rather than 20 when calculating 35 } \times 27 \text {; subtracting the } \\ \text { smaller value from the larger in calculations such as 45 - 26 to give the } \\ \text { answer 21; incorrect signs when working with negative numbers. }\end{array} \\ \hline \text { The pupil's accuracy } \\ \text { is marginal }\end{array} \begin{array}{l}\text { Overlays can never be 100\% accurate. However, provided the answer is } \\ \text { within, or touches, the boundaries given, the mark(s) should be awarded. }\end{array}\right\}$

What if ...

The final answer is wrong but the correct answer is shown in the working.	Where appropriate, detailed guidance will be given in the mark scheme and must be adhered to. If no guidance is given, markers will need to examine each case to decide whether:
	- the incorrect answer is due to a transcription error \quad If so, award the mark.
	- in questions not testing accuracy, the correct If so, award the mark. answer has been given but then rounded or truncated
	- the pupil has continued to give redundant extra working which does not contradict work already done If so, award the mark.
	- the pupil has continued, in the same part of the question, to give redundant extra working which does contradict work already done. If so, do not award the mark. Where a question part carries more than one mark, only the final mark should be withheld.
The pupil's answer is correct but the wrong working is seen.	A correct response should always be marked as correct unless the mark scheme states otherwise.
The correct response has been crossed or rubbed out and not replaced.	Mark, according to the mark scheme, any legible crossed or rubbed out work that has not been replaced.
More than one answer is given.	If all answers given are correct or a range of answers is given, all of which are correct, the mark should be awarded unless prohibited by the mark scheme. If both correct and incorrect responses are given, no mark should be awarded.
The answer is correct but, in a later part of the question, the pupil has contradicted this response.	A mark given for one part should not be disallowed for working or answers given in a different part, unless the mark scheme specifically states otherwise.

Marking specific types of question

Responses involving money
For example: $£ 3.20$ £7

Accept \checkmark	Do not accept x
\checkmark Any unambiguous indication of the correct amount eg £3.20(p), £3 20, £3,20, 3 pounds 20, £3-20, £3 20 pence, £3:20, £7.00 The unit, $£$ or p, is usually printed in the answer space. Where the pupil writes an answer outside the answer space with no units, accept responses that are unambiguous when considered alongside the given units eg with $£$ given in the answer space, accept 3.20 7 or 7.00 Given units amended eg with $£$ crossed out in the answer space, accept 320p 700p	\boldsymbol{x} Incorrect or ambiguous indication of the amount eg $£ 320, £ 320$ p or $£ 700$ p \mathbf{x} Ambiguous use of units outside the answer space eg with $£$ given in the answer space, do not accept 3.20 p outside the answer space x Incorrect placement of decimal points, spaces, etc or incorrect use or omission of 0

Responses involving negative numbers

For example: -2

Accept \checkmark	Do not accept \mathbf{x}
To avoid penalising the error below more than once within each question, do not award the mark for the first occurrence of the error within each question. Where a question part carries more than one mark, only the final mark should be withheld. \timesIncorrect notation eg 2-	

Responses involving the use of algebra

For example: $2+n \quad n+2 \quad 2 n \quad \frac{n}{2} \quad n^{2}$

Accept \checkmark
\checkmarkUnambiguous use of a different case or variable

Take care ! Do not accept x

or variable
eg $\quad N$ used for n x used for n

Words used to precede or follow
equations or expressions
eg $t=n+2$ tiles or
tiles $=t=n+2$
for $t=n+2$

Unambiguous letters used to indicate expressions
eg $\quad t=n+2$ for $n+2$
! Unconventional notation
eg $\quad n \times 2$ or $2 \times n$ or $n 2$
or $n+n$ for $2 n$
$n \times n$ for n^{2}
$n \div 2$ for $\frac{n}{2}$ or $\frac{1}{2} n$
$2+1 n$ for $2+n$
$2+0 n$ for 2
Within a question that demands simplification, do not accept as part of a final answer involving algebra. Accept within a method when awarding partial credit, or within an explanation or general working.
\mathbf{x} Embedded values given when solving equations
eg in solving $3 x+2=32$,

$$
3 \times 10+2=32 \text { for } x=10
$$

To avoid penalising the two types of error below more than once within each question, do not award the mark for the first occurrence of each type within each question. Where a question part carries more than one mark, only the final mark should be withheld.
! Words or units used within equations or expressions

$$
\text { eg } n \text { tiles }+2
$$

$$
n \mathrm{~cm}+2
$$

Do not accept on their own. Ignore if accompanying an acceptable response.
\mathbf{x} Ambiguous letters used to indicate expressions

$$
\text { eg } \quad n=n+2 \text { for } n+2
$$

Responses involving time
A time interval For example: 2 hours 30 minutes

Accept \checkmark	Take care ! Do not accept x
\checkmark Any unambiguous indication eg 2.5 (hours), 2h 30 \checkmark Digital electronic time ie $2: 30$	x Incorrect or ambiguous time interval eg 2.3(h), 2.30, 2-30, 2h 3, 2.30 min ! The unit, hours and/or minutes, is usually printed in the answer space. Where the pupil writes an answer outside the answer space, or crosses out the given unit, accept answers with correct units, unless the question has specifically asked for other units to be used.
A specific time For example: 8:40am	17:20
Accept \checkmark	Do not accept x
\checkmark Any unambiguous, correct indication eg $08.40,8.40,8: 40,0840,840$, $8-40$, twenty to nine, 8,40 \checkmark Unambiguous change to 12 or 24 hour clock eg 17:20 as $5: 20 \mathrm{pm}, 17: 20 \mathrm{pm}$	Incorrect time eg $\quad 8.4 \mathrm{am}, 8.40 \mathrm{pm}$ x Incorrect placement of separators, spaces, etc or incorrect use or omission of 0 eg 840, 8:4:0, 084, 84

Responses involving coordinates
For example: (5, 7)

Accept \checkmark	Do not accept x
\checkmark Unconventional notation eg (05,07) (five, seven) $\left(\begin{array}{l}x \\ (5, \\ \hline\end{array}\right)$ $(x=5, y=7)$	Incorrect or ambiguous notation eg (7,5) $(7,5)$ ($5 x, 7 y$) $\left(5^{x}, 7^{y}\right)$ $(x-5, y-7)$

Responses involving probability

A numerical probability should be expressed as a decimal, fraction or percentage only.
$\begin{array}{lrrr}\text { For example: } & 0.7 & 10 & 70 \%\end{array}$

Accept \checkmark	Take care ! Do not accept \times
\checkmark Equivalent decimals, fractions and percentages $\begin{aligned} & \text { entages } \\ & \text { eg } \quad 0.700, \frac{70}{100}, \frac{35}{50}, 70.0 \% \end{aligned}$	The first four categories of error below should be ignored if accompanied by an acceptable response, but should not be accepted on their own. However, to avoid penalising the first three types of error below more than once within each question, do not award the mark for the first occurrence of each type of error unaccompanied by an acceptable response. Where a question part carries more than one mark, only the final mark should be withheld.
\checkmark A probability correctly expressed in one acceptable form which is then incorrectly converted, but is still less than 1 and greater than 0$\text { eg } \quad \frac{70}{100}=\frac{18}{25}$! A probability that is incorrectly expressed eg 7 in 10 7 over 10 7 out of 10 7 from 10
	! A probability expressed as a percentage without a percentage sign. ! A fraction with other than integers in the numerator and/or denominator. ! A probability expressed as a ratio eg $7: 10,7: 3,7$ to 10
	\mathbf{x} A probability greater than 1 or less than 0

Recording marks awarded on the test paper

All questions, even those not attempted by the pupil, will be marked, with a 1 or a 0 entered in each marking space. Where 2 m can be split into 1 m gained and 1 m lost, with no explicit order, then this will be recorded by the marker as 1

The total marks awarded for a double page will be written in the box at the bottom of the right-hand page, and the total number of marks obtained on the paper will be recorded on the front of the test paper.

A total of 120 marks is available in each of tiers $3-5,4-6,5-7$ and 6-8.

Awarding levels

The sum of the marks gained on paper 1, paper 2 and the mental mathematics paper determines the level awarded. Level threshold tables, which show the mark ranges for the award of different levels, will be available on the NAA website www.naa.org.uk/tests from Monday 23 June 2008.

Tier \& Question					Rounding
3-5	\|5-7	6-8			
1				Correct response	Additional guidance
a			2m or 1m	Matches all four numbers correctly, ie Matches at least two numbers correctly	! Number matched to more than one nearest hundred For 2 m or 1 m , do not accept as a correct match
b			1m 1m (U1)	Gives a value greater than or equal to 45 but less than 55 Gives a different value greater than or equal to 45 but less than 55 from any credited for the first mark	\checkmark Fractions or decimals \times Value of exactly 55 given

Tier \& Question					Placing 40
3-5	6 5-7	6-8			
3				Correct response	Additional guidance
			1m 1m	Indicates 40 in the correct position, ie Indicates 40 in the correct position, ie	! Inaccurate indication Accept provided their indication is closer to the correct marker than any other ! Follow-through For the second mark, accept responses in which the distance between the arrow and zero is half as big as for the first mark

Tier \& Question						Writing cheques
3-5 4	4-6	5-7 6	6-8			
5					Correct response	Additional guidance
				1m	$\text { £ } 102.70$ $\text { £ } 120.07$! Non-standard notation Condone any unambiguous notation eg, for the first mark accept - $£ 102=70$

Tier \& Question						Theme park
3-5	5-7	76-8				
6					Correct response	Additional guidance
a			1m	8		
b			1m	7		
c			1m	5		

Tier \& Question							
3-5	4-6\|	5-7 ${ }^{6}$	6-8				
8						Correct response	Additional guidance
a				1m	2134		
b				1m	663768		

Tier \& Question					Time machine
3-5 4-6 5-7 6-8					
9	1			Correct response	Additional guidance
			$2 \mathrm{~m}$ or 1m	6 Shows the value 94 or the values 4 and 2 or Shows a complete correct method with not more than one computational error eg - $100-46-48$ - $100-(46+48)$ - $100-46=53$ (error) $53-48=5$	\times For 1m, necessary brackets omitted eg $\cdot 100-46+48$

Tier \& Question					Four cards
$3-54-6$ 5-7 $6-8$ 10					
10	2			Correct response	Additional guidance
			2m or $\mathbf{1 m}$	Matches all four statements to their correct positions, ie Matches any two statements to their correct positions	! Statement matched to more than one position For 2 m or 1 m , do not accept as a correct match

Tier \& Question						Shopping
13	5				Correct response	Additional guidance
a	a			1m	£ 1.15	
b	b			1m	5	! Reference to remainder Condone reference to the correct amount of money left over eg, accept - 5 with 20 p change - 5 r 20 eg, do not accept - $5.5(\ldots)$ or 5.6 - 5 with 55 p change

Tier \& Question						Speedometer
3-5		5-7	6-8			
14	6				Correct response	Additional guidance
a	a			1m	Indicates the correct value on the scale, ie	! Inaccurate indication Accept provided their marker would touch the circumference of the dial within 2 mm of the correct position, if extended
b	b			1m	40	

Tier \& Question			Football survey		
3-5	4-6	5-7 6-8			
15	7			Correct response	Additional guidance
			2m or 1m (U1)	Gives the value 3 in the key and completes 3 circles for each of the Yes and No rows Shows or implies the value 9 eg - Completes 9 circles for one or both rows or Draws the same number of circles for each of the Yes and No rows, provided this number is not 4 , even if the value in the key is incorrect or omitted	! Circles not shaded, or inaccurate in size Accept provided the pupil's intention is clear

Tier \& Question						Jug
3-5	4-6	5-7 6-8				
16	8			Correct response	Additional guidance	
			1m	750		
			1m	100		
			1m	$\frac{1}{5}$ or equivalent fraction or decimal		

Tier \& Question			Double shape		
3-5		5-7 6-8			
17	9			Correct response	Additional guidance
a	a		1m	Indicates Yes and gives a correct explanation The most common correct explanations: Show or imply the correct areas eg - The area of the rectangle is 18 , the area of the square is 9 and $9 \times 2=18$ - A is 18 and B is $18 \div 2=9$ Refer to the space taken up by each shape eg - Two of the squares can fit inside the rectangle - If you draw a line down the middle of the rectangle, you get two of the squares - A holds twice as many squares as B Refer to the ratio of lengths together with the equal widths eg - They are the same width but the rectangle is twice as long as the square - 6×3 is twice 3×3	! Incorrect units Condone eg, accept - $18 \mathrm{~cm}, 9 \mathrm{~cm}$ - $18^{2}, 9^{2}$ \checkmark Minimally acceptable explanation eg -18, 9 - 2×9 (or double 9), 9 - $18,18 \div 2$ \times Incomplete explanation eg - The area of the rectangle is 18 \checkmark Minimally acceptable explanation eg - A holds two squares - You cut A in half to get B - Rectangle divided into two squares on the diagram - I counted the squares inside the shapes \times Incomplete explanation eg - The area of A is twice the area of B - B is half of A - He's just added another shape on - I counted the squares \checkmark Minimally acceptable explanation eg - Equal width, but the length is doubled - Same height, but width is twice as long - $6 \times 3,3 \times 3$ \times Incomplete explanation eg - The rectangle is twice as long as the square - Because A is 6 squares long and B is 3 squares long

Tier \& Question						Track
3-5	4-6	5-7	6-8			
19	11	2			Correct response	Additional guidance
a	a	a		1m	5	! Response assumes the piece of track shown has already been counted For answers of 4 for part (a) followed by 5 for part (b), mark as 0,1
b	b	b		1m	6	

Tier \& Question							Matching expressions
3-5	4-6	5-7 6	6-8				
20	12	3			Correct response		Additional guidance
				2m or 1m	Matches all four statements correctly, ie Matches three of the statements correctly		Statement matched to more than one expression For 2 m or 1 m , do not accept as a correct match

Tier \& Question							Area
3-5	4-6	5-7	6-8				
21	13	4			Correct response	Additional guidance	
				1 m	Gives both correct areas, ie 9 then 3		

Tier \& Question							Values
3-5	4-6	5-7	-6-8				
22	14	5			Correct response	Additional guidance	
a	a	a		1m	6	! Incomplete processing Penalise only the first occurrence eg, for parts (a) and (b)	
b	b	b		1m	-2	$\begin{gathered} 4-6 \\ \text { Mark as } 0,1 \end{gathered}$	

Tier \& Question					Using algebra
3-5 4-6		5-7 6			
25	18	8		Correct response	Additional guidance
			1m 1m	$n+2$ $2(n+2) \text { or } 2 n+4$! Unsimplified expression or unconventional notation eg, for Jo's age - $n+1+1$ - $1 n+2$ eg, for Kate's age - $2 \times(n+2)$ - $n \times 2+4$ Condone ! For the second mark, follow-through Accept follow-through as $2 \times$ their algebraic expression for Jo's age provided there are no other errors eg, from Jo's age as 2 n accept - $4 n$ - $n \times 4$ \times For the second mark, incomplete processing eg - $2 \times n+2 \times 2$ \times For the second mark, necessary brackets omitted eg - $2 \times n+2$ - $2(n+2$

Tier \& Question				Goldbach		
3-5	4-6	5-7	6-8			
26	16	9			Correct response	Additional guidance
a	a	a		1 m 1m (U1)	Gives a pair of prime numbers that sum to 16 , ie 3 and 13, in either order or 5 and 11, in either order Gives a different pair of prime numbers that sum to 16 from any credited for the first mark	\times Values credited for the first mark repeated but in reverse order
b	b	b		1m (U1)	Completes the sentence correctly, giving an even number greater than 16 and a correct pair of prime numbers that sum to their number eg - ... even number 20 prime numbers 7 and 13 - ... even number 22 prime numbers $\mathbf{1 1}$ and $\mathbf{1 1}$ - ... even number 50 prime numbers $\mathbf{3}$ and 47	\times Their even number is less than or equal to 16 Markers may find the following values useful:

Tier \& Question		Side length		
3-5 4-6 $5-76$ 6-8				
2719	10		Correct response	Additional guidance
		2m or 1m (U1)	6.3 or equivalent Shows the value 25.2 or equivalent or Shows a complete correct method with not more than one computational error eg - $8.4 \times 3 \div 4$ - $(8.4+8.4+8.4) \div 4$ - $8.4+8.4+8.4=25.6$ (error), $25.6 \div 4=6.4$	\times For 1m, necessary brackets omitted eg $\text { - } 8.4+8.4+8.4 \div 4$

Tier \& Question							
$3-54-6$	$5-7$	$6-8$					Darts
$\mathbf{2 1}$	$\mathbf{1 2}$	$\mathbf{2}$		Correct response	Additional guidance		
			$\mathbf{1 m}$	Gives all three correct numbers, ie 10,15 and 20 [any order]			

Tier \& Question					Conversions
3-5	4-6	5-7 6			
	22	13	3	Correct response	Additional guidance
			1m	Gives a correct explanation The most common correct explanations: Show the values in grams do not consistently go up/down in steps of 25 per ounce eg - It goes up in 25 s until the step from 3 to 4 ounces when it suddenly goes up 35 - It should go from 150 g down to 125 g , but it's 110 g instead Show that the relationship between two values in grams is not what other values would predict eg - If 1 ounce is 25 g , then 4 ounces should be $25 \times 4=100 \mathrm{~g}$ not 110 g - If 5 ounces is 150 g , then 10 ounces should be $150 \times 2=300 \mathrm{~g}$ not 275 g - 10 ounces in grams should be $25 \times 10=250$, but it is 275 in the table - $50 \div 2=25$, but $150 \div 5=30$	\times Explanation does not use the values in the given table eg - 1 ounce is more like 28 g - They only use 25 g as roughly equal, so those values are not accurate ! Explanation states or implies what values 'should be' or that the table is 'incorrect' Condone \checkmark Minimally acceptable explanation eg - It goes up in 25 s at first but then changes - It goes up 25, 25, 35, 40 and so it is not a steady pattern - It should go 25, 50, 75, 100 - The numbers should go up by the same amount each time \times Incomplete explanation eg - 25, 25, 35, 40 - 4 ounces should be 100 g and 10 ounces should be 250 g - They don't go up in proportion \checkmark Minimally acceptable explanation eg - $25 \times 4 \neq 110$ - 4 should be $25 \times 4=100$ - $150 \times 2 \neq 275$ - If 5 is 150 , then 10 should be 300 - $50 \div 2 \neq 150 \div 5$ - 10oz should equal double 5 oz but it doesn't \times Incomplete explanation eg - 1 ounce is 25 g so 4 ounces shouldn't be 110 g - 5 ounces $=150 \mathrm{~g}$, but 10 ounces $=275 \mathrm{~g}$

Tier \& Question						Concorde
3-5	4-6	5-7				
	23	14	4		Correct response	Additional guidance
				$2 \mathrm{~m}$ or 1m	Shows or implies a correct rate, other than 1 mile every 3 seconds, even if it doesn't use single units of time eg - 20 (miles) per minute - $\frac{1}{3}$ (mile) in a sec - 10 miles in 30 seconds - 60 miles every 3 mins or Shows or implies a complete correct method with not more than one computational or rounding error eg - 20×60 - $\frac{60}{3} \times 60$ - $\frac{1}{3} \times 3600$ - $1 \div 3=0.33$ (premature rounding) $0.33 \times 60^{2}=1188$! For 1m, unit(s) abbreviated Condone provided unambiguous within the context of the question eg, for 1 m accept - 20 m per min - $\frac{1}{3} \mathrm{~m} / \mathrm{s}$ [miles implied by given context] eg, for 1 m do not accept - 20 m per m [ambiguity between miles and minutes]

Tier \& Question					Counters in a bag
3-5 4-6	5-7	6-8			
24	15	5		Correct response	Additional guidance
			2m or $1 \mathrm{~m}$	Completes the sentence correctly with three positive integers r, w then y, such that $w=2 r$ and $y<r$ eg - 2, 4 then 1 - 3, 6 then 1 or 2 - 4, 8 then 1,2 or 3 Completes the sentence with three integers r, w then y, such that $w=2 r$ and $y=0$ eg - 2, 4 then 0 - 3, 6 then 0 or Completes the sentence with three values r, w then y between zero and one, such that $r>\frac{1}{4}, w=2 r$ and $r+w+y=1$ eg - $\frac{2}{7}, \frac{4}{7}$ then $\frac{1}{7}$ - 0.3, 0.6 then 0.1	\times For 1m, values for r or w negative or zero eg - $-1,-2$ then 0 - 0,0 then 0

Tier \& Question					Perimeters
3-5 4-6	5-7	6-8			
25	16	6		Correct response	Additional guidance
a	a	a	1m	$7 a+3$! Unsimplified expression or unconventional notation eg - $\frac{42 a+18}{6}$ - $(42 \times a+18) \div 6$ Condone \times Necessary brackets omitted eg $42 a+18 \div 6$
b	b	b	1m	5	
c	c	c	1m	24	! Units given Ignore, even if incorrect for a perimeter eg, accept - 24 cm - $24 \mathrm{~cm}^{2}$ \times Incomplete processing eg - 4×6

Tier \& Question						Lawn
3-5 4-6	5-7					
27	18	8		Correct response	Additional guidance	
			$2 \mathrm{~m}$ or 1m	28.(...) or 9π Shows or implies a complete correct method for finding the area of the lawn, with no evidence of conceptual error and not more than one computational or rounding error eg - Shows the digits 282(...) or 283 - $3^{2} \times \pi$ - $\pi=3$ (rounding error), $9 \times 3=27$	\times For 1m, conceptual error eg - $3^{2} \times \pi=19$ or $18.8(\ldots)$ or 6π - $\pi 3^{2}=89$ - Area $=2 \times 3 \times \pi$	

Tier \& Question					Triangular numbers
3-5 4-6	5-7				
28	19	9		Correct response	Additional guidance
a	a	a	1m	55	
b	b	b	1m	5050	

Tier \& Question					Journeys
3-5 4-6		6-8			
30	20	11		Correct response	Additional guidance
	a	a	1m	Gives all four names in the correct order, ie Chris Dee Ann Ben	
	b b		2m or 1m	Joins the points $(0,0),(15,1),(30,1.5)$ and $(60,4)$ with straight lines, ie Indicates at least two of the points $(15,1)$, $(30,1.5)$ and $(60,4)$ on the graph, even if they are not joined or are joined incorrectly or Shows or implies all three sets of coordinates $(15,1),(30,1.5)$ and $(60,4)$ in working, even if the graph is incorrect or omitted	! Lines not ruled or accurate Accept provided the pupil's intention is clear For 1m, follow-through from their (15, 1) with an incorrect y-value For an incorrect y-value between 0.5 and 3 inclusive, accept their $(30,1.5)$ as (30, their incorrect y-value +0.5) eg, for 1 m accept
	c	c	1m	5	! Follow-through from their graph in part (b) Provided their line for the final section of the graph has a positive gradient and passes through (60,4), accept follow-through as $2 \times(4$ - their y-coordinate for $(30,1.5))$

Tier \& Question					
3-5	4-6\|5-7	5-7 \|6-8			
		2212		Correct response	Additional guidance
				Indicates Both paid the same and gives a correct justification eg - Marie paid $96-9.60=86.40$ Richard paid $108-21.60=86.40$ - $0.9 \times 96=86.4$ $0.8 \times 108=86.4$ Gives a correct justification but makes an incorrect or no decision or Gives a correct justification with not more than one computational or rounding error, but follows through to make their correct decision eg - Marie paid $96-9.60=87.4(0)$ (error) Richard paid $108-21.60=86.4(0)$	\checkmark For 2m, minimally acceptable justification eg - 96 - 9.6(0), 108 - 21.6(0) - $0.9 \times 96,0.8 \times 108$ - 86.4(0) \times For $2 m$ or 1m, incomplete justification eg - 10% off 96 is the same as 20% off 108 - It works out to be the same \times For 1m, conceptual error eg $\text { - } \begin{aligned} 20 \% \text { off } 108 & =108-(108 \div 20) \\ & =108-5.40 \\ & =102.60 \end{aligned}$

Tier \& Question			Marking overlay available		Planes
3-5 4-6	5-7	6-8			
	23	13		Correct response	Additional guidance
	a	a	1m	Indicates the correlation is positive	! Positive qualified Ignore eg, accept - Strong positive - Direct positive \times Sign of correlation not indicated eg - High - Strong ! Relationship quantified Ignore alongside a correct response \times Relationship described without reference to correlation eg - The greater the wingspan, the more passengers it can hold
	b	b	1m	Draws a line of best fit within the tolerance, and at least of the length, as shown on the overlay	! Line not ruled or accurate Accept provided the line is within tolerance, and at least of the length required ! Line of best fit is incorrect beyond the dashed lines on the overlay Condone eg, accept - A correct line of best fit that is then joined to the origin
	c	c		3600 to 5200 inclusive Shows a value between 180 and 260 inclusive or Shows a value that follows through from their line of best fit eg - Their line passes through the point $(40,280)$, final answer: 5600	! For 1m, range for follow-through value If their line goes through $(40, y)$ accept follow-through as $20 \times(y \pm 10)$ provided their line always has a positive gradient

Tier \& Question			Best buy		
3-5	4-6 5-7	6-8			
	25	15		Correct response	Additional guidance
			2m	Indicates A and gives a correct justification, based on correctly calculating a pair of comparable values The most common justifications: Compare pence (or pounds) per gram eg - $159 \div 454=0.35(\ldots)$ - $125 \div 340=0.36(\ldots)$ (or 0.37) Compare grams per penny (or per pound) eg - $454 \div 159=2.8(\ldots)$ (or 2.9) $340 \div 125=2.7(2)$ - $454 \div 1.59=285$.(...) (or 286) $340 \div 1.25=272$ Reason proportionally using the prices eg - $125 \div 340 \times 454=166$.(...) (or 167) That's more than 159 - $159 \div 454 \times 340=119 .(\ldots)$, which is <125 - $1.59 \times 340=540(.6)($ or 541$)$ $1.25 \times 454=567(.5)($ or 568$)$ - $2 \times 340=680 \mathrm{~g}$, which is $£ 2.50$ $1.5 \times 454=681 \mathrm{~g}$, which is only $£ 2.39$ - $4 \times 340 \mathrm{~g}=1360 \mathrm{~g}$ for $£ 5$ $3 \times 454 \mathrm{~g}=1362 \mathrm{~g}$ for $£ 4.77$ - If A were decreased by 114 g its price should go down by 40 p (or 39.(..)p), but the difference is 34 p so it's a worse reduction - $454-340=114 \mathrm{~g}, £ 1.59-£ 1.25=34 \mathrm{p}$ but $\frac{114}{340} \times 1.25=42$ p (or $41 .(\ldots)$ p) Shows a correct pair of comparable values but makes an incorrect or no decision or Shows correct calculations for a pair of comparable values, with not more than one error if evaluation is attempted, then follows through to make their correct decision eg - $159 \div 454$ and $125 \div 340$, so A - $454 \div 159=2.8(\ldots)$ $340 \div 125=27.2$ (error), so B	\checkmark For $2 m$, correct decision and any pair of comparable values shown Note that common pairs are: $0.35(\ldots)$ and $0.36(\ldots)$ or 0.37 (p per g) $0.0035(\ldots)$ and $0.0036(\ldots)$ or 0.0037 (£ per g) 2.8(...) or 2.9 and 2.7(2) (g per p) 285.(...) or 286 and 272 (g per £) 159 and 166.(...) or 167 119.(...) and 125 (p per 454 g) $540(.6)$ or 541 and $567(.5)$ or 568 (£ per 154 360g) 34 and 39.(...) or 40 (p for 114 g extra compared to A) 34 and 41.(..) or 42 (p for 114 g extra compared to B) ! Correct decision and comparison is per $454 g$ or per 340 g but given price is not restated Condone eg, for 2 m accept - $125 \div 340 \times 454=167$! Correct decision but units omitted, incorrect or inconsistent Condone provided any values used to make a decision are comparable eg, for 2 m accept - $1.59 \div 454=0.35$ $1.25 \div 340=0.37$! Additional incorrect working Ignore \times For $2 m$ or 1m, incomplete justification eg $\begin{aligned} & 454-340=114 \mathrm{~g} \\ & £ 1.59-£ 1.25=34 \mathrm{p} \end{aligned}$ Therefore jar A because you get 114 g more for only 34 p extra \times For $2 m$ or 1m, comparable values, or the method to calculate them, not shown eg - The big jar is 8 p cheaper

Tier \& Question						Shadows
3-5	4-6 5	5-7 6	6-8			
		261	16		Correct response	Additional guidance
				2m or 1m	4.2 or equivalent Shows the value $\frac{2}{3}$ or $\frac{3}{2}$ or equivalents or Shows or implies a complete correct method with not more than one computational or rounding error eg - $1.8 \div 2.7 \times 6.3$ - $1.8 \div 2.7=0.6$ (rounding error) $0.6 \times 6.3=3.78$ - $6.3 \div 2.7=2.3$ (rounding error) $1.8 \times 2.3=4.14$! For 1m, value rounded For $\frac{2}{3}$, accept $0.66(\ldots)$ or 0.67

Tier \& Question				1, 2, 4	
3-5 4-6 5 5-7\|6-8					
	717		Correct response	Additional guidance	
		or 2m or 1m	Gives a complete correct response that satisfies all four of the following conditions: 1. Indicates that A is 8 2. Indicates that B is 7 3. Indicates that C is 8 4. Shows or implies correct substitution at least for value C eg - $\frac{4\left(4^{2}-3 \times 4+8\right)}{6}$ - $\frac{4 \times 12}{6}$ - $48 \div 6$ Gives a response that satisfies three of the four conditions Gives a response that satisfies two of the four conditions		

Tier \& Question					
3-5	4-6\|5-7	5-7 \|6-8			
		2818		Correct response	Additional guidance
		a	$\begin{array}{\|c\|} \hline 2 \mathrm{~m} \\ \\ \\ \\ \\ \\ \\ \text { or } \\ 1 \mathrm{~m} \end{array}$	$14.4(\ldots)$, or $4 \sqrt{ } 13$, or $\sqrt{ } 208$ Shows a correct method that indicates at least the intention to square and subtract the two given lengths eg - $17^{2}-9^{2}$ - 289-81 - 208 seen	! Value of 14 Do not accept unless a correct method or a more accurate value is seen \times For $2 m$ or 1m, method uses accurate or scale drawing
		b	$\begin{array}{\|c} \hline 2 \mathrm{~m} \\ \\ \\ \\ \\ \\ \\ 1 \mathrm{~m} \end{array}$	7.8 or $7.79(\ldots)$ Shows or implies a correct trigonometric ratio involving not more than one unknown eg - Answer of 7.7 - $12 \tan 33$ - $\tan 33=\frac{\mathrm{DF}}{12}$ - $\tan 33=0.6$ (premature rounding), $12 \times 0.6=7.2$ - $\tan 57=\frac{12}{x}$! Value of 8 Do not accept unless a correct method or a more accurate value is seen \times For $2 m$ or 1m, method uses accurate or scale drawing ! For 1m, no indication of which angle is being considered eg $\text { - } \tan =\frac{\mathrm{DF}}{12}$ For 1 m , accept only if the trigonometric ratio is correct for the given angle DEF

Tier \& Question		Box plots		
3-5	4-6 5-7 6-8			
	19		Correct response	Additional guidance
	a	1m	6	
	b	1m	Gives a correct justification eg - Median for year $10=56$, Median for year $11=65$, $65-56=9$ - The medians are the vertical lines inside the grey boxes, they are $4 \frac{1}{2}$ divisions apart and this is 9 marks since 1 division $=2$ marks	\checkmark Minimally acceptable justification eg - 56, 65 - The medians are the vertical lines inside the boxes and they are 9 marks apart - There is a gap of 9 [with both medians indicated on the graph] ! Ambiguous notation eg $\cdot 56-65$ Condone x Incomplete justification eg - The difference between the medians is 9 marks on the graph
	c	1m	Indicates Yes and gives a correct explanation, referring to the inter-quartile range eg - Inter-quartile range for year $10=33$, Inter-quartile range for year $11=18$, so year 11 was more consistent - The middle half of the year group was less spread out for year 11 than for year 10 - The grey box shows the inter-quartile range and it is shorter for year 11	\checkmark Minimally acceptable explanation eg - 33, 18 - Its inter-quartile range is 15 less - The IQ range is smaller - The IQ range is bigger for year 10 - The box is shorter (or smaller) - For Y10: 43 to 76, for Y11: 51 to 69 - It is shorter [distance between upper and lower quartiles indicated on both box plots] ! 'Inter-quartile range' referred to as 'range' within an otherwise correct explanation Accept only if it is clear the response actually refers to the inter-quartile range eg, accept - For year 10, range $=33$ For year 11, range $=18$ eg, do not accept - The range is bigger for year 10 \times Incomplete explanation eg - Year 11 is shorter than year 10 - The results for year 10 are more spread out than in year 11

Tier \& Question			Circle graph		
3-5	4-6	5-7 6 -8			
		20		Correct response	Additional guidance
		a	$2 \mathrm{~m}$ or 1m	Completes both pairs of coordinates correctly, ie $(3,4)$ and $(3,-4)$, in either order Completes either pair of coordinates correctly or Shows the value 16 or Shows or implies a correct method for finding the value of y eg - $y^{2}=25-3^{2}$	
		b	1m	5	$x-5$ or ± 5
		c	2m or 1m	Gives P as $(3.5,3.5)$ Shows the value $3.5(\ldots)$ or 12.5 or equivalent or Shows or implies a correct method for finding the value of x or y eg - $2 y^{2}=25$ - $x^{2}=25 \div 2$	For 2m, gives Pas (-3.5, -3.5) Condone \times For 2m, equivalent fractions or decimals

Tier \& Question					Giant pandas
3-5	4-6 5	5-7 6-8			
		21		Correct response	Additional guidance
			2m or 1m	Shows the digits 11 (...) or Shows or implies a complete correct method eg - $1600 \div 140 \times 100$ - $\frac{1600}{1.4}$ - $\frac{160000}{140}$! For $2 m$ upper bound used Since pupils could assume 1600 is given to the nearest 100 in the context of the question, accept use of upper bound provided a correct method is seen eg, for 2 m accept - $1650 \div 140 \times 100$, answer: 1200 \checkmark For 1m, lower and/or upper bound used within a correct method eg, for 1 m accept - $1650 \div 140 \times 100$ - $1550 \div 1.4$

Tier \& Question					Prism
3-5	4-6	5-7\|6-8			
		22		Correct response	Additional guidance
				$6.9(\ldots)$, or $4 \sqrt{ } 3$, or $\sqrt{ } 48$ Shows or implies a correct method with not more than one computational or rounding error eg - $\sqrt{32+16}$ - $\sqrt{ } 32=5.6$ (rounding error) $\mathrm{AC}^{2}=5.6^{2}+4^{2}$ $\mathrm{AC}=6.8(\ldots)$ - $\sqrt{ } 32=6$ (premature rounding) $\sqrt{36+16}=7.2$ Shows sufficient working to indicate correct application of Pythagoras' theorem for at least one triangle eg - $4^{2}+4^{2}$ - 2×16 - $5.6(\ldots)$ or 5.7 seen - $(\text { Their BC })^{2}+4^{2}$! Value of 7 Do not accept unless a correct method or a more accurate value is seen \times For 3m, $2 m$ or 1m, method uses accurate or scale drawing

Tier \& Question					Number cards
3-5	4-6	5-7 6-8			
		23		Correct response	Additional guidance
				Gives all three correct values, ie 15 20 25 in any order Gives any two correct values, with not more than one error or omission or States or implies that n is a multiple of 5 and that there are $\frac{n}{5}$ square numbers eg - There must be 1 out of 5,2 out of 10 , 3 out of 15 etc for the fraction to be right - (1) 23 (4) 5 , but should be only one $\begin{array}{llll}6 & 7 & 8 & (9) \\ 10\end{array}$, but should be only two $\begin{array}{llll}11 & 12 \quad 13 \quad 14 & 15\end{array}$, correct	! For 1m, minimally acceptable implication For 1m, accept responses in which there are at least three examples using multiples of 5 , (with no examples not using multiples of 5) and some square numbers identified, even if there are errors or omissions eg - $1,2,3,4,5$, so n could be 5 $6,7,8, ~ \underline{9}, 10$, so n could be 10 $11,12,13,14,15$

Tier \& Question				Window
3-5	4-6 5-7 6-8			
	24		Correct response	Additional guidance
			Gives an integer value between 3925 and 3928 inclusive Shows a non-integer value between 3925 and 3927.5 inclusive [rounding to the nearest whole number omitted] or Shows an integer value between 7850 and 7855 inclusive [division of whole circle area by 2 omitted] or Shows or implies a complete correct method with not more than one error, and follows through to give their value correct to the nearest whole number eg - $1 \mathrm{~m} \div 2=50 \mathrm{~cm}$, $\frac{\pi \times 50^{2}}{2}=\begin{aligned} & \text { integer response outside } \\ & \text { correct range }\end{aligned}$ - $\pi \times 0.5 \times 0.5=0.79$ (premature rounding), $0.79 \div 2=0.395$, $0.395 \times 10000=3950$ - $\frac{\pi \times 0.5^{\frac{2}{2}}}{2} \times 100($ error $)=39$ Shows a non-integer value between 7850 and 7855 inclusive or Shows the value $0.39(\ldots)$ or equivalent [ie, the correct area in m^{2}] or Shows or implies a complete correct method with not more than one error but fails to follow through to give their value correct to the nearest whole number eg - $1 \mathrm{~m} \div 2=50 \mathrm{~cm}$, $\frac{\pi \times 50^{2}}{2}=\begin{aligned} & \text { non-integer response outside } \\ & \text { correct range }\end{aligned}$ - $\pi \times 25^{2}$ (error) $\div 2=981.75$	\times For $2 m$ or 1m, conceptual error eg $\text { - } \pi \times 100 \div 2=157$ \times For $2 m$ uses a radius of 25 or 0.25

Tier				Question	Page
3-5	4-6	5-7	6-8		
1				Rounding	11
2				Cuboid	12
3				Placing 40	12
4				Directions	13
5				Writing cheques	14
6				Theme park	14
7				Adding odd	15
8				Calculating	15
9	1			Time machine	16
10	2			Four cards	16
11	3			Sleep	17
12	4			Sorting shapes	17
13	5			Shopping	18
14	6			Speedometer	18
15	7			Football survey	19
16	8			Jug	19
17	9			Double shape	20
18	10	1		Cube edges	22
19	11	2		Track	22
20	12	3		Matching expressions	23
21	13	4		Area	23
22	14	5		Values	23
23	15	6		Symmetry patterns	24
24	17	7		Shop	25
25	18	8		Using algebra	26
26	16	9		Goldbach	27
27	19	10		Side length	28

Tier				Question	Page
3-5	4-6	5-7	6-8		
	20	11	1	Value of x	29
	21	12	2	Darts	29
	22	13	3	Conversions	30
	23	14	4	Concorde	31
	24	15	5	Counters in a bag	32
	25	16	6	Perimeters	33
	26	17	7	Yoghurt	33
	27	18	8	Lawn	34
	28	19	9	Triangular numbers	34
	29	21	10	Isosceles triangle	35
	30	20	11	Journeys	36
		22	12	Special offer	37
		23	13	Planes	38
		24	14	Cubes	39
		25	15	Best buy	40
		26	16	Shadows	41
		27	17	1, 2, 4	42
		28	18	Triangles	43
			19	Box plots	44
			20	Circle graph	45
			21	Giant pandas	46
			22	Prism	47
			23	Number cards	48
			24	Window	49

