
St Osmund’s Computing Curriculum Framework

The St Osmund’s computing curriculum framework at a minimum, fulfils the purpose and aims of the computing national curriculum. The curriculum is
designed in unit blocks of varying lengths that run in 50 minutes to an hour sessions. Each unit has a description of the learning outcomes that all pupils are
expected to achieve by the end of that sequence of learning, these amount to our age related expectations. The units form the basis of what pupils learn in
class, and will be adapted by class teachers who will tailor their own lesson plans based on assessments of pupil learning and appropriate teaching
methods.

Curriculum Intent

The intention of the Computing Curriculum is to inspire learners and provide a creative, engaging and inclusive curriculum for all, as well as developing a
narrative of what computer science is.

The intention is that every pupil in key stage 2 and 3 has the opportunity to learn material that is recognisably ‘Computer Science’ and develop the key
thinking skills described as ‘Computational Thinking’, thereby preparing students to confidently access and use all form of technology in the future. St
Osmund’s believes in providing a rich, deep learning experience that balances all the aspects of computing; computer science, information technology, and
digital literacy, providing pupils with a varied curriculum.

The curriculum plans for sequences of learning, that provide opportunities to develop mastery in computational thinking concepts and build on these from
KS2 to KS3. It is recognised that computational thinking can be developed in any of the strands of the curriculum.

The School values of Hope, Community, Respect and Love are also explored and promoted throughout the curriculum, especially within the modules
recognising the importance of using technology in a safe and positive way and so E-safety is threaded throughout the curriculum. Explicit cross curriculum
links are made at key stage 2; at key stage 3 it is recognised that the ways of thinking developed in computing are useful and applicable across the
curriculum; similarly how logical and abstract thinking are developed in maths or science will compliment how thinking develops in computing.

Spiralled Curriculum

The curriculum has been designed to build on pupils’ prior knowledge. Each topic continues to be developed throughout the four years at St Osmund’s,
developing pupils’ understanding and promoting good progress. Below shows the progression some of the key topics within the curriculum.

Computer Science

 Binary

 Binary Numbers
Other Binary

Representations Boolean Logic

Ks2

Year 5

Year 6
Converting blocks
into binary digits

and vice versa

Boolean
Operators when

using search
engines

KS3

Year 7

Converting
between binary

and denary
Binary Encryption

Introduction to
Logic Gates

Writing Names
using ASCII

Introduction to
bitmap images using

binary digits

Year 8

Binary Addition Binary images

 Sound Waves

 2 bit images binary
pictures

Programming

 Programming

 Logo Scratch Micro:Bits HTML Python

Ks2

Year 5

Iteration, using
repeats

Use movement,
change
costumes,
speech

Iteration, loops
and repeats

Creating
Procedures

Iteration - Using
repeats and
loops

Introduction of
subroutines

Use of variables
to create
algorithm art

Year 6

Use of selection
- If and Else

Use of selection
- If and Else

Use of multiple
variables

Use of variables

Introduction to
lists

KS3

Year 7

Use of variables
to create
outputs

Using html tags

Using the
Python Editor to
look at block
code in Python
in Microbits

Representing
code in a flow
chart

Adding colour,
hyperlinks and
pictures using
html

Changing parts
of the Python
code to make
changes in their
block code

Year 8

Radio Function -
sending and
receiving
messages

Create Inputs
and Outputs

Programming
solutions to real
life problems

Create variables
for use within
the code

Use of selection
- If, Elif and Else

Use of
operators

 Random lists

Digital Literacy

 E Safety

Ks2

Year 5

Creating a Positive Digital Footprint

Identifying Phishing Emails and Scams

Protecting Information online. Passwords and Sharing information

Cyberbullying - what it is, how to deal with it and prevention

Year 6

Consent and Social Media. Terms and Conditions and gathering information

Communicating safely online

Promoting a positive digital footprint

Protecting your information online – social media

KS3

Year 7

Identifying Cyberbullying and ways to deal with it

Communicating safely online

Social media and mental health

Creators Rights – copyright

Year 8

Digital Footprints and their future implications

Consequences of a Digital Footprint

Protecting yourself online/Sexting

Identifying unsafe behaviour online from others

Section 2: Pedagogical approaches and implementation

There are many different approaches that can be taken to deliver the curriculum content. Below are some of the main teaching methods we use in the

delivery of the curriculum and their rational to support teacher lesson planning.

The variety of resources available necessitates a consideration of the pedagogy that each of the resources utilises and how the pedagogy can be applied to

your learners to ensure that each pupil achieves regardless of gender or need.

The NC focus is on computational thinking, creativity and problems solving.

Knowledge Organisers

Each module has an associated knowledge organiser that contains key vocabulary and important features of the programs they will be using. These will be

easily accessible for pupils in their folders as well as being displayed on the school website. Pupils will be able to reference these throughout the lessons

during questioning and ‘Do it now’ tasks to support their learning.

Do it now tasks

At the start of each lesson, pupils will be given some ‘Do it now’ questions that review past learning. By repeatedly revisiting concepts, this will help pupils

commit learning to their long term memory and aid their retrieval of key information.

Differentiation

In class, all pupils are exposed to challenging content, the teacher will adapt, scaffold or extend the curriculum depending on the need of individual pupils.

Questioning also adheres to the school ‘No hands Up’ policy and so is targeted to each individual by the teacher to consolidate and extend depending on

the need of a pupil.

Previously high attaining pupils and potential high attaining pupils

Within each activity, high attaining pupils are encouraged to showcase their creativity and independent thinking. To obtain a band 5, pupils need to

reference what new skills and individual content they have included in their project on their assessment grid. This content could be achieved by using hint

sheets to explore new material and concepts, adapt what they have been taught to give a different outcome or include their own independent learning.

SEND and Pupil Premium

All teachers are aware of the SEND and Pupil Premium pupils within their classes. Teachers should have read any learning passports and become acquainted

with how best to support that individual. Teachers will have also spent time devising a seating plan that best supports the learner’s needs and identify key

pairings for discussion and paired work.

Each teacher will scaffold and adapt the lesson content to best suit the individuals’ needs so that every pupils can achieve their full potential and access the

Computing Curriculum.

Unplugged activities

Unplugged activities are useful to focus the learning on just the intended understanding by reducing cognitive load. Several unplugged activities for

developing algorithmic thinking are included in key stage 2.

Learning to Program

Introductory programming can be seen as equivalent to a language course or like learning a musical instrument; it involves practice and making lots of

mistakes. Perseverance is required to develop fluency. By the end of year 8, we would like students to be able to independently code e.g. given a challenge

and write the code without any input. That means that they have to have developed skills and knowledge that they are confiden t enough to transfer to a

new problem.

Students do need to memorise the syntax of some key programming constructs e.g. inputs/outputs, if statements, and for loops. This decr eases cognitive

load and enables students to practices programming more fluently. Typing activities and debugging challenges (syntax and logic errors) support the

development of this fluency.

Pair programming

Pair programming is quite simple: pairs of programming students work collaboratively on a shared project and take turns acting in two roles: the Driver

controls the computing device and writes the code, while the Navigator provides direction, spots errors, and thinks ahead to the next part of the

project. Throughout a programming session, the pair regularly swaps roles, so that each individual performs each role several times while working on the

same programming task.

Research has conclusively shown the efficacy of pair programming, so it is a recommended practice for computing teachers in schools.

Although the principle is simple, pair programming, when implemented well, has positive effects on the performance and attitude of learners, as well as

added benefits for the teacher:

 One of the benefits demonstrated by most studies is learners' increased engagement in and enjoyment of the programming task.
 There is also evidence that, compared with solo programming, pair programming boosts learners' self-confidence and interest in the subject material.

This may explain the increased student retention through introductory programming courses and into follow-up courses.

 Studies have found that pair programming can lead to learning gains, most readily evidenced through improved code quality and programs with fewer
common mistakes.

 Pair programming has been shown to reduce cognitive load by effectively sharing any additional load between the pair. This "distributed cognition"
means that each role takes on different types of cognitive tasks.

 Opportunities to collaborate are valuable in and of themselves: students get to practice a transferable skill that is important for their future careers
and especially sought after in the software development sector.

 There are also added benefits for the teacher: firstly, each learner has a partner that they can direct low-level and practical questions to, freeing up
the teacher to focus on the paired work going on.

https://www.youtube.com/watch?v=vgkahOzFH2Q

PRIMM: A structured approach to teaching programming

PRIMM is one approach that has been researched as a way to help teachers to structure lessons in programming.

The following text is taken from:

https://blogs.kcl.ac.uk/cser/2017/09/01/primm-a-structured-approach-to-teaching-programming/

https://www.youtube.com/watch?v=vgkahOzFH2Q
https://blogs.kcl.ac.uk/cser/2017/09/01/primm-a-structured-approach-to-teaching-programming/

It is based on research into the learning of programming but combines different areas. Our overall interpretation of the research is that teaching
programming requires a blended approach using a range of strategies.

PRIMM stands for the following:

 Predict

 Run

 Investigate

 Modify

 Make

You may not be able to go through all stages in one lesson and may even focus on one stage more than another but remembering PRIMM gives you a

way of labelling what you are doing when you are teaching programming.

Being PRIMM-like in your lessons

The following table gives some examples of activities that can be used within a PRIMM-like approach. We would recommend that all these activities are
done in pairs.

Stage Activity Why

Predict In pairs look at a piece of code printed out or on the

whiteboard and ask students what they think it will do.

They can write down their prediction or discuss in a

group class discussion. Live coding is quite useful here

or the code can be already prepared.

This activity encourages students to look for clues in the program that

suggest what its function is.

Run Download a piece of code from a shared area and check

against your prediction (don’t copy in the code).

Having code that is provided has many benefits – it moves the weight of

ownership of any errors from the student to the teacher, increasing

confidence, and it also means that time is not spent copying in code,

which can be a challenging exercise to students who struggle with

literacy at any level.

Investigate There are lots of different activities you can do at this

stage: trace through the code, comment the code,

answer questions about it, label particular concepts,

highlight it, draw the flow of control, etc. Again pair

work helps to encourage discussion about the nitty

gritty of the program

It takes many activities of this type, repeated in different forms in

different lessons, for students to start to understand the underlying

concepts in a secure way. We may tend to think that writing one

selection statement correctly means that students have a good

understanding of selection but really “getting” this takes some time.

Modify Given a working piece of code, students are challenged

to add a variety of modifications, starting very simply

and having a series of exercises increasing in difficulty

with larger modifications.

The transfer of ownership moves from the code being “not mine” to

“partly mine” as students gain confidence by extending the function of

the code. This activity obviously provides the scaffolding that students

need to add small snippets of code and see their effect within a bigger

program

Make Once students are confident in modifying the program

that you have created, they can create their own

program from scratch, which has similarities with the

previous program but that they can design themselves

Design of a new program is an important skill, and should start with

planning and trying to construct a suitable algorithm. This is difficult,

but does give students an opportunity to be creative and have the

satisfaction of making their own program

Scaffolding learning

The reason we designed the PRIMM approach is because we recognised, from our own teaching and others’ research that learners need much more
support to understand programming concepts. This means that strategies are needed that scaffold the learning and also promote discussion about what
is going on in the programs. Working in pairs can also provide students with mutual support which is a form of scaffolding, as well as promoting
discussion and an articulation of the problems, around the code.

Spectrum of techniques

Importantly, copying code in from a worksheet does not give us any indication that a student understands what they are typing in, and the processes
involved in copying are high on cognitive load. At the other extreme, tinkering or exploring without guidance can be fun, but without an understanding of
the concepts can lead to frustration. Other strategies in between these extremes include running and testing code, predicting outcomes of code, tracing
code, annotation of code, modifying code, etc. and PRIMM is one approach that combines these.

Physical Computing

Physical computing is an educational context for teaching computer science by using hardware and software to create tangible constructs. Using simple

inputs, physical computing takes data from the physical world and manipulates it digitally to create outputs. This is included to increase student

engagement by getting pupils interacting with hardware and experience different computer systems.

Homework

Pupils will be set one to two pieces of homework each term that is linked to the topic they are currently studying. This will then be marked in class, offering

immediate feedback.

Marking and Feedback

Within computing lessons, pupils can achieve very different but relevant outcomes. Therefore, pupils’ predominant source of feedback is immediate,

individually-tailored verbal feedback provided by the Teacher. However, alongside this, pupils may be offered alternative forms of feedback to enhance

their own learning and progress. These are:

 Written feedback – pupils are given notes on their own piece of work and their next steps in order to improve their work and make progress such

as, when programming in Python adding # within their code to add notes specifically for them.

 Self-assessment – pupils are given time to reflect on their work and enhance or debug their work, becoming effective independent learners.

Charting their starting point

 Peer assessment – Pupils receive feedback from fellow pupils to improve their work.

o Pupils also use ‘Pair Programming’ where one pupil writes exactly what the other instructs, thus prompting valuable discussion.

 Whole class feedback – if a key teaching point needs addressing for the whole class.

Curriculum Impact

Assessment

In line with the DASP Middle Schools we use a 5 band system which are reported to parents three times a year.

Teachers record bands for each different module where the success criteria for ARE has been decided on as a department. Work is then moderated as a

department to ensure consistency. These are then used to inform the overall band at the end of each term.

Online quizzes are also used to assess pupils’ vocabulary and retention skills which are then banded. This also adds to a pupils’ final assessment band.

Monitoring

Monitoring is undertaken regularly to ensure consistency across the department. This is done through:

 Lesson drop ins.

 Looking at pupil work

 Pupil conferencing

 Looking at data

 Discussion with teachers within the department

Feedback will be given both individually and departmentally so that we can continue to progress as a department.

